A Maximal Operator and a Covering Lemma on Non-Compact Symmetric Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Poisson Structure on Compact Symmetric Spaces

We present some basic results on a natural Poisson structure on any compact symmetric space. The symplectic leaves of this structure are related to the orbits of the corresponding real semisimple group on the complex flag manifold.

متن کامل

A formula for the First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces

Let G/K be a simply connected spin compact inner irreducible symmetric space, endowed with the metric induced by the Killing form of G sign-changed. We give a formula for the square of the first eigenvalue of the Dirac operator in terms of a root system of G. As an example of application, we give the list of the first eigenvalues for the spin compact irreducible symmetric spaces endowed with a ...

متن کامل

Extremely Non-symmetric, Non-multiplicative, Non-commutative Operator Spaces

Motivated by importance of operator spaces contained in the set of all scalar multiples of isometries (MI-spaces) in a separable Hilbert space for C∗-algebras and Esemigroups we exhibit more properties of such spaces. For example, if an MI-space contains an isometry with shift part of finite multiplicity, then it is one-dimensional. We propose a simple model of a unilateral shift of arbitrary m...

متن کامل

A note on maximal non-prime ideals

The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$,  we mean an ideal $I$ of $R$ such that $Ineq R$.  We say that a proper ideal $I$ of a ring $R$ is a  maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...

متن کامل

Lemma 2: a Symmetric Maximal-pool System Preserves Property A1

Proof: We present here only a sketch of the proof. Consider a symmetric maximal-pool system X m (DB), and a single-paging 1 system with a buffer-pool of size m and a buffer replacement policy that is the same as that of the symmetric system. Let F(s,m) denote the number of faults experienced by the single-paging system when it encounters a reference string s. We can show that X m (DB) preserves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2000

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2000.v7.n1.a8